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Ab s t r ac t 

A l a r g e  a r r a y  is an array whose s t o r a g e  is d i s t r i b u t e d  among primary and 

secondary s t o r a g e  and whose processing may be  d i s t r i b u t e d  among s e v e r a l  t a s k s  

i n  a d i s t r i b u t e d  system. This paper p r e s e n t s  a semantic model (set of lan-  

guage concepts)  f o r  represent ing  large a r r a y s  i n  a d i s t r i b u t e d  system i n  such 

a way t h a t  t h e  performance reali t ies inhe ren t  i n  t h e  d i s t r i b u t e d  s to rage  and 

process ing  can be adequately represented. An implementation of t he  l a r g e  ar- 

ray  concept as an ADA package ( abs t r ac t  d a t a  type)  is  descr ibed,  as w e l l  as a 

p a r t i c u l a r  t a i l o r i n g  of t h e  concept f o r  the  NASA F i n i t e  E l e m e n t  Machine. An 

example a p p l i c a t i o n  program using the package is  also descr ibed.  
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1. In t roduc t ion  

D i s t r i b u t e d  processing of la rge  d a t a  s t r u c t u r e s  i s  an important  problem 

t h a t  has  received r e l a t i v e l y  l i t t l e  a t t e n t i o n  a t  t h e  l e v e l  of programming lan-  

guage design. This  paper p re sen t s  a set of language concepts ,  t h a t  is, a se- 

mantic model, t o  support  the  processing of l a r g e  a r r a y s  on a v a r i e t y  of d i s -  

t r i b u t e d  and p a r a l l e l  computer a rch i t ec tu re s .  The semantic model is intended 

t o  p re sen t  a u n i f i e d  view t o  the  user of l a r g e  a r r a y s ,  so t h a t  t he  u s e r  may 

s t r u c t u r e  h i s  program as an a r r a y  processing program, without  r a d i c a l  d i s t o r -  

t i o n  of t h e  underlying algorithm. However, t he  a r r a y s  i n  ques t ion  are under- 

s tood t o  be p a r t i t i o n e d  and d i s t r i b u t e d  among processor  memories and secondary 

s t o r a g e  i n  a d i s t r i b u t e d  a rch i t ec tu re .  This  means t h a t  the  use r  view cannot 

simply be  t h e  t r a d i t i o n a l  language view of a r r a y s ,  because t h e r e  are perfor-  

mance realities as soc ia t ed  wi th  the  d i s t r i b u t i o n  and movement of po r t ions  of 

t h e  a r r a y  during d i s t r i b u t e d  processing t h a t  should not  be masked from t h e  

user .  As Jones and Schwarz [4] note  i n  t h e i r  s tudy  of use of t he  CM , perfor -  

mance reali t ies i n  a d i s t r i b u t e d  computation cannot r e a l i s t i c a l l y  be masked 

e n t i r e l y  from t h e  use r  without  a major degrada t ion  i n  performance of a d i s t r i -  

buted system. This  paper p re sen t s  the semantic model, descr ibed i n i t i a l l y  as 

an ADA package de f in ing  an a b s t r a c t  d a t a  type " la rge  array".  An implementa- 

t i o n  des ign  f o r  an MZMD d i s t r i b u t e d  computer, t h e  NASA F i n i t e  Element Machine 

[ 5 ] ,  is  descr ibed  and an app l i ca t ion  f o r  t h i s  machine i s  sketched. 

* 



2. Background 

Most la rge  s c i e n t i f i c  computations involve i n t e n s i v e  processing of l a r g e  

a r r ays .  The p o t e n t i a l  f o r  computational speedup by d i s t r i b u t i n g  a r r a y  pro- 

ces s ing  i n  var ious ways among mul t ip l e  processors  has  been t h e  d r iv ing  f o r c e  

behind t h e  design of most vec to r  and SIMD supercomputers such as the  ILLIAC- 

I V ,  t h e  GRAY 1, t h e  CDC CYBER 205, and the  NASA Massively P a r a l l e l  Processor  

(MPP) (21. MIMD d i s t r i b u t e d  systems provide an oppor tuni ty  f o r  tak ing  advan- 

t age  of t h e  pa ra l l e l i sm inherent  i n  these  computations i n  d i f f e r e n t  ways. The 

NASA F i n i t e  Element Machine (FEM) (51, a 36 processor  d i s t r i b u t e d  system, and 

t h e  CMU CM* represent  two r a d i c a l l y  d i f f e r e n t  MIMD a r c h i t e c t u r e s  t h a t  might 

p o t e n t i a l l y  be used i n  such app l i ca t ions .  

Language s t r u c t u r e s  proposed f o r  a r r a y  process ing  on paral le l  computers 

have pr imar i ly  concent ra ted  on ex tens ion  of ord inary  language a r r a y s  t o  in- 

c lude  s p e c i f i c a t i o n  of p a r a l l e l i s m  i n  c e r t a i n  d i r e c t i o n s ,  such as is done i n  

P e r r o t t ' s  ACTUS 191 . Language proposa ls  f o r  d i s t r i b u t e d  computation, such as 

CSP (31, ARGUS [61, and ADA have not  t r e a t e d  the  problem of l a r g e  da t a  s t ruc -  

t u r e  processing (beyond cons idera t ion  of o rd ina ry  f i l e  process ing) .  

There a re  two coupled problems i n  the  d i s t r i b u t e d  processing of l a r g e  

da t a  s t r u c t u r e s  such as a r r a y s  f o r  which we seek an e f f e c t i v e  language treat- 

men t : 

1. The p a r t i t i o n i n g  of an a r r a y  and i ts  d i s t r i b u t e d  p rocess ing  on t h e  

s e p a r a t e  processors  of an MIMD system. W e  seek  a s o l u t i o n  t h a t  a l lows l a r g e  

scale concurrent processing of shared d a t a  s t r u c t u r e s  without  a major overhead 

i n  t a s k  communication o r  unnecessary mutual exc lus ion  as t a s k s  t r a v e r s e  t h e  

d a t a  s t r u c t u r e s .  Guardians l61 and monitors,  f o r  example, provide mutual ex- 

c lus ion  b u t  sharply l i m i t  t h e  concurrency a v a i l a b l e ,  while  semaphores, c r i t i -  

c a l  reg ions ,  and rendezvous al low more concurrency but  only with a l a r g e  com- 

munication overhead. 
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2. The p a r t i t i o n i n g  of an array and its d i s t r i b u t e d  s t o r a g e  i n  both sec- 

ondary s t o r a g e  and processor  memories i n  an MIMD system. To process  a l a r g e  

d a t a  s t r u c t u r e  such as an a r r a y  usual ly  r e q u i r e s  a complex series of da t a  par- 

t i t i o n i n g s  and da ta  movements through a d i s t r l b u t e d  system. It is t h i s  prob- 

l e m  t h a t  p re sen t s  a major d i f f i c u l t y  even f o r  u s e r s  of convent ional  vec to r  and 

SIMD a r r a y  computers. For example, P e r r o t t  and Stevenson [ lo ]  r epor t  t h a t  

u s e r s  of t h e  ILLIAC-IV found da ta  p a r t i t i o n i n g  and d a t a  movement t o  be t h e  

most d i f f i c u l t  a spec t  of programming f o r  t h a t  machine. For d i s t r i b u t e d  s t o r -  

age,  w e  seek a s o l u t i o n  t h a t  f r e e s  the user  from t h e  t a s k  of managing d i r e c t l y  

t h e  complexi t ies  of s t o r a g e  and data  movement inhe ren t  i n  t h e  use  of a d i s t r i -  

buted system, without  masking the  c r i t i c a l  performance reali t ies involved. 

The r o o t s  of our  approach are found more d i r e c t l y  i n  t r a d i t i o n a l  language 

s t r u c t u r e s  f o r  s e q u e n t i a l  f i l e  process ing  than  i n  those  f o r  a r r a y  

processing.  Consider t h e  PASCAL view of f i l e s .  A f i l e  is a l a r g e  l i n e a r  d a t a  

s t r u c t u r e  i n  PASCAL. It might e a s i l y  be considered as a one-dimensional a r r a y  

r a t h e r  than  as a s e p a r a t e  d a t a  type ( f o r  economy of language concept) ,  b u t  

Wirth avoided t h i s  temptat ion i n  the PASCAL des ign ,  as most o t h e r  language de- 

s i g n e r s  have done. The f a c t  t h a t  PASCAL a r r a y s  are of i n v a r i a n t  s i z e  wh i l e  

f i l e s  may be extended a t  one end is t h e  least important  d i f f e r e n c e  between 

f i l e s  and vec to r s  (APL, f o r  example, a l lows new elements t o  be concatenated t o  

a vec to r ) .  Ignoring t h i s  d i f fe rence ,  t h e r e  appear t o  be t h r e e  = in  d i s t i n c -  

t i o n s  between f i l e s  and vec tors .  Each is a l i n e a r  sequence of components of 

a r b i t r a r y  type i n  PASCAL, but  (1) a f i l e  is a large d a t a  s t r u c t u r e  presumed t o  

be d i s t r i b u t e d  between secondary and c e n t r a l  memory, while  a vec to r  is resi- 

dent  e n t i r e l y  i n  c e n t r a l  memory, (2 )  process ing  of a f i l e  at  random p o i n t s  is 

no t  p o s s i b l e ,  due t o  the  d i s t r i b u t e d  na tu re  of i ts  s to rage ,  bu t  i n s t ead  is 

r e s t r i c t e d  t o  a window which makes only p a r t  of t h e  f i l e  v i s i b l e  a t  one t i m e ,  
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and (3) a f i l e  has a l i f e t i m e  t h a t  i s  p o t e n t i a l l y  longer  than  t h a t  of the  pro- 

gram processing i t ,  s o  t h a t  i t s  s t r u c t u r e  is def ined  independent ly  of t he  pro- 

gram processing it .  

The language concept of f i l e  processing is s t r a igh t fo rward .  A program 

wishing t o  process a f i l e  is  given a window (one component wide i n  PASCAL) on 

t h e  f i l e .  Processing is only poss ib l e  wi th in  t h e  window, bu t  t he  window may 

be moved i n  c e r t a i n  r egu la r  p a t t e r n s  on t h e  f i l e .  To process  an e n t i r e  f i l e ,  

a program pos i t i ons  its window a t  one end, and then a l t e r n a t e s  processing and 

window moving s t eps  u n t i l  t h e  e n t i r e  f i l e  has  been t r ave r sed .  An end-of-f i le  

func t ion  allows t h e  end of t he  f i l e  t o  be de tec ted .  To extend the  f i l e ,  t he  

window is pos i t ioned  j u s t  p a s t  t he  end of t he  f i l e ,  and a new component is as- 

signed * 

Implementation of f i l e  processing is a l s o  an  area where d i s t r i b u t e d  pro- 

cess ing  concepts have been widely used on a l i m i t e d  s c a l e .  Typica l ly ,  two 

processors  cooperate,  one execut ing t h e  user  program and the  o the r  managing 

the  bu f fe r ing  of blocks of d a t a  from secondary s t o r a g e  i n t o  b u f f e r s  i n  c e n t r a l  

memory. From the re  the  f i r s t  process  moves t h e  d a t a  i n t o  use r  program vari-  

ab le s  ( represent ing  i t s  process ing  "window") f o r  process ing  as demanded by t h e  

program. The u s e r  is e f f e c t i v e l y  pro tec ted  from having t o  manage these  t rans-  

f e r s  h imsel f ,  bu t  t h e  language concepts of "window" and "moving the  window" 

ref lect  more a b s t r a c t l y  the  performance real i t ies  inhe ren t  i n  the  implementa- 

t i o n  s t r u c t u r e .  
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3. Language Concepts f o r  Large Array P rocess ing  

I n  many a p p l i c a t i o n s  t h a t  involve process ing  of l a r g e  a r r a y s ,  t h e  a r r a y s  

are s t o r e d  and processed i n  a manner more similar t o  t h a t  appropr i a t e  f o r  f i l e  

process ing  than f o r  a r r ay  processing i n  t r a d i t i o n a l  languages. That is, t h e  

a r r a y s  are l a r g e  d a t a  s t r u c t u r e s  tha t  must be s t o r e d  a t  least p a r t i a l l y  on 

secondary s t o r a g e ,  t h e i r  l i f e t i m e  is  d i f f e r e n t  from t h a t  of t he  programs pro- 

ces s ing  them, they are processed i n  blocks t h a t  e f f e c t i v e l y  r ep resen t  a pro- 

ces s ing  window on the  a r r ay ,  and the p a t t e r n  of process ing  involves  a r e g u l a r  

(and o f t e n  repea ted)  traversal of the e n t i r e  s t r u c t u r e  by a l t e r n a t i n g  s t e p s  of 

process ing  and moving. W e  wish t o  provide a language semantic model t o  sup- 

p o r t  t h i s  view of a r r a y s  and a r r ay  processing,  and extend it  appropr i a t e ly  f o r  

a d i s t r i b u t e d  computation on each array.  

The semantic model is based on the  fo l lowing  concepts:  

1. A large array is t o  be seen by the  programmer as a s i n g l e  da t a  s t ruc -  

t u r e  wi th  t h e  same l o g i c a l  organiza t ion  as an o rd ina ry  a r r ay .  For example, a 

l a r g e  ma t r ix  (two-dimensional a r ray)  is  organized as a g r i d  of rows and 

columns i n  the  usua l  way. This  allows t h e  use  of a lgor i thms developed f o r  ma- 

t r i x  process ing  t o  be used without r a d i c a l  d i s t o r t i o n  of t h e i r  s t r u c t u r e .  

2. A l a r g e  a r r ay ,  however, is not o r d i n a r i l y  v i s i b l e  t o  a s i n g l e  t a sk  as 

a u n i t  a t  one t i m e .  Ins tead  a task sees only a p a r t  of t h e  a r r a y  through a 

r e c t a n g u l a r  window. Only the  p a r t  of t h e  a r r a y  v i s i b l e  i n  t h e  window may be  

accessed  and modified. Thus t h e  window is t h e  locus  of processing f o r  t h e  

task.  

3. A window may be posi t ioned on an a r r a y  by a t a s k  and subsequent ly  

moved as needed. Thus t o  process  an e n t i r e  a r r a y ,  a window is c rea t ed  and 

pos i t i oned  on the  a r ray .  The data  v i s i b l e  i n  t h e  window is processed, and 

then t h e  window is moved t o  a neighboring pos i t i on .  Processing and moving 
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a l t e r n a t e  u n t i l  t h e  a r r a y  is  completely t r ave r sed .  A r e g u l a r  movement p a t t e r n  

may be  expressed i n  a t a s k  us ing  an ex tens ion  of a FOR loop ( a  CLU type  i t e r -  

a t o r  mechanism [7] is  appropr i a t e ) .  A l t e r n a t i v e l y ,  t h e  MOVE opera t ion  may be 

d i r e c t l y  invoked as requi red .  

4 .  A t a s k  may subdiv ide  i ts  window i n t o  smaller p a r t s  c a l l e d  subwindows. 

Subwindows may be  passed as parameters t o  sub ta sks  f o r  concurrent process ing .  

The sub ta sks  may synchronize and communicate i n  t h e  usua l  ways t o  exchange in- 

formation during process ing  (e.g., t o  r eques t  va lues  from a neighboring sub- 

window). However, subwindows cannot be moved independently;  on ly  the  e n t i r e  

window may be moved. Thus t h e  p rocess ing  proceeds i n  phases. The window is 

moved by t h e  main task.  The subtasks  are invoked t o  process the  d a t a  wi th in  

t h e i r  subwindows. When a l l  t he  subtasks  have te rmina ted ,  t he  main t a s k  may 

aga in  move the window. P a r t i t i o n i n g  of a window i n t o  subwindows is done sta- 

t i c a l l y  as par t  of the  window d e f i n i t i o n  r a t h e r  than dynamically. 

5 .  Windows and subwindows inay be  c rea t ed  with t h r e e  d i f f e r e n t  types of 

access  p r i v i l e g e s :  Read-only, write-only, and read-write. Overlap of 

read-only subwindows is aliowed, but write-only and read-write subwindows must 

be d i s j o i n t .  

6 .  Operations are provided t o  allow a t a s k  t o  d e t e c t  t h e  "borders" of an 

a r r a y  (analogous t o  the usua l  end-of-f i l e  test). 

7. A t a sk  may have s e v e r a l  windows on d i f f e r e n t  a r r a y s ,  and these  may be 

moved asynchronously as needed. 

8 .  Several t a s k s  may have windows concur ren t ly  on the same a r r a y ,  bu t  

write-only and read-write windows are not  allowed t o  overlap.  - 
This conceptual model €or  l a r g e  a r r a y  p rocess i ag  allows the  language 

s t r u c t u r e  t o  r e f l e c t  t he  performance real i t ies  of d i s t r i b u t e d  s t o r a g e  and pro- 

ces s ing  without unduly burdening t h e  use r  with implementation d e t a i l s .  I%us 



t h e  use r  may be made aware t h a t  a MOVE is  c o s t l y  and i n h i b i t s  concurrent  pro- 

ces s ing  ( s i n c e  a l l  subtasks  must te rmina te)  wi thout  l o s i n g  t h e  conceptua l  

u n i t y  of viewing the  da t a  s t r u c t u r e  as an a r r a y  ( r a t h e r  than as s e p a r a t e  

blocks d i s t r i b u t e d  between secondary and primary s t o r a g e ) .  

4. "Large Array" as an Abstract Data Type 

The class of l a r g e  a r r a y s  is appropr i a t e ly  considered as a new a b s t r a c t  

d a t a  type. As such it might be included as an ex tens ion  t o  an e x i s t i n g  lan- 

guage o r  as p a r t  of a new language f o r  d i s t r i b u t e d  computing. To ga in  some 

exper ience  wi th  use and implementation of t he  semantic model o u t l i n e d  above, 

w e  have chosen t o  de f ine  the  model as an a b s t r a c t  type wi th in  ADA, us ing  t h e  

gene r i c  package f a c i l i t y .  The ADA t a sk ing  f a c i l i t y  provides  a " v i r t u a l  

computertt t h a t  may be considered as an a b s t r a c t  d i s t r i b u t e d  machine. Within 

t h i s  abstract machine, the  LARGE-ARRAY package d e f i n e s  a d e t a i l e d  implementa- 

t i o n  of t h e  l a r g e  a r r ay  model described above, and a l s o  provides  a syntax  (not  

e n t i r e l y  i d e a l )  f o r  c r e a t i n g  and operat ing on l a r g e  a r r a y s .  

An important  aspec t  of the  LARGEARRAY a b s t r a c t  type is t h a t  i t  subsumes 

t h e  b a s i c  model f o r  ord inary  sequent ia l  f i l e  process ing  (exc lus ive  of s p e c i a l  

f e a t u r e s  f o r  t ex t  f i l e s ) .  Thus a one-dimensional l a r g e  array (vec to r )  repre- 

s e n t s  a genera l ized  form of s equen t i a l  f i l e ,  i n  which t h e  window may be l a r g e r  

than  a s i n g l e  element. I f  two tasks each have a window simultaneously on a 

s i n g l e  l a r g e  vec to r ,  such t h a t  one is gene ra t ing  new elements while  t h e  o t h e r  

is  process ing  e x i s t i n g  elements,  the model become8 t h a t  of the  UNIX pipe ,  

which is  a l s o  an ex tens ion  of t h e  usual s e q u e n t i a l  f i l e  processing concept t o  

a (more r e s t r i c t e d )  d i s t r i b u t e d  system. 
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The publ ic  s p e c i f i c a t i o n  p a r t  of t he  ADA gene r i c  package is given i n  

Space does not p e r m i t  t h e  complete d e f i n i t i o n  t o  be given,  so i t s  Appendix A. 

b a s i c  i n t e r n a l  s t r u c t u r e  is descr ibed informal ly  here .  

Crea t ing  l a r g e  a r r ays  

As can be seen from the  package d e f i n i t i o n ,  one o r  awre l a r g e  a r r a y s  con- 

t a i n i n g  elements of t he  same type can be supported by one i n s t a n t i a t i o n  of t h e  

gene r i c  package via the  type LARGE-ARFUY. P r e e x i s t i n g  a r r a y s  i n  e x t e r n a l  

f i l e s  can b e  accessed by a t t a c h i n g  one of t hese  l a r g e  a r r a y s  v i a  the  procedure 

OPEN, whi le  new a r r a y s  can be c rea t ed  using the  procedure CREATE. The row and 

column bounds of a l a r g e  a r r a y  are s p e c i f i e d  a t  t h e  t i m e  of a s s o c i a t i n g  t h e  

Large a r r a y  with an e x t e r n a l  f i l e  and remain f i x e d  during the  ex i s t ence  of the  

a r ray .  Procedure CLOSE can be used t o  sever  t h e  a s s o c i a t i o n  of an i n t e r n a l  

l a r g e  a r r a y  with i t s  a s soc ia t ed  e x t e r n a l  f i l e .  Procedure DELETE d e l e t e s  t he  

a s soc ia t ed  ex te rna l  f i l e .  

The package i n t e r n a l l y  views a l a r g e  a r r a y  as a sequence of blocks,  each 

block be ing  defined as a subarray of t h e  l a r g e  a r r a y  as shown i n  Fig. 1. The 

block i s  used as a u n i t  f o r  t r a n s f e r  of da t a  between secondary s to rage  and 

primary memory(s). Thus the  block s i z e  is implementation dependent and de te r -  

mined by t h e  optimum s i z e  f o r  1/0 d a t a  t r a n s f e r .  

The row and column bounds are used t o  determine the  t o t a l  number of 

blocks needed f o r  the  l a r g e  a r ray .  I n  our ADA implementation, f o r  each of t he  

blocks c o n s t i t u t i n g  the  l a r g e  a r r a y  a monitor- l ike t a s k  of type BLOCK 

CONTROLLER is  i n i t i a t e d  t o  c o n t r o l  access t o  t h e  block. The reading and w r i -  

t i n g  of t h e  block t o  secondary s t o r a g e  is performed by the  a s soc ia t ed  t a s k  as 

and when required These BLOCK-CONTROLLER t a s k s  are d iscussed  f u r t h e r  below 

i n  conjunct ion  with the  implementation of window movement. 
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Windows 

Windows are s t a t i c a l l y  a t tached  t o  a p a r t i c u l a r  l a r g e  a r r a y  us ing  t h e  

procedure CREATE. The same procedure i s  a l s o  used t o  s p e c i f y  t h e  s i z e  of t h e  

window and i t s  p r i v i l e g e s ,  i -e . ,  whether i t  is read-only (R), write-only ( W ) ,  

o r  read-write (RW). The row and column increments t o  be used f o r  r e l a t i v e  

movement of t he  window are a l s o  passed as parameters t o  the procedure. The 

u s e r  can s p e c i f y  an edge element tha t  will be used t o  f i l l  ou t  t h e  p o r t i o n  of 

t h e  window t h a t  does no t  l i e  wi th in  the  bounds of t h e  a s s o c i a t e d  l a r g e  a r r a y  

when t h e  window is  moved p a s t  t h e  edge of t h e  a r r a y .  

A window is viewed by t h e  user as an a r r a y  of s p e c i f i e d  s i z e  along wi th  

information which is p r i v a t e  t o  t h e  package. Thus t h e  process ing  of t h e  ele- 

ments of t h e  l a r g e  a r r a y  v i s i b l e  through t h e  window is  performed i n  a manner 

analogous t o  

Each numbered 

1 3  
I 
I --+.---- 

I 

I 

9 l a  UT- 
I I 
I I I 

I 
I 

l a r g e  array 

-----indicates block boundary 

block has an assoc ia ted  BLOCK-CONTROLLER task .  

indicate8 wlndov boundary 

Fig. 1. Large a r r a y  with four windows, showing t h e  d i v i s i o n  
i n t o  blocks i n  the ADA implementation. 
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t h e  processing of an ord inary  small a r r ay .  That is, t h e  access ing  of window 

elements is  done through subsc r ip t ing  r e l a t i v e  t o  t h e  o r i g i n  of t he  window 

r a t h e r  than t h e  o r i g i n  of t he  l a r g e  a r r ay .  

Moving a window 

Two methods of window movement are provided: r e l a t i v e  and absolute .  The 

MOVE procedure uses  t h e  row and column increments  (def ined when c r e a t i n g  t h e  

window) t o  move t h e  window t o  a new p o s i t i o n  r e l a t i v e  t o  the  p re sen t  

pos i t i on .  The SET procedure,  on t h e  o the r  hand, moves the  window t o  the  ind i -  

ca t ed  absolu te  p o s i t i o n  on the  a r ray .  Thus SET can be used t o  e s t a b l i s h  t h e  

i n i t i a l  pos i t i on  of t h e  window on the  a r r ay .  

Whenever a window is  moved, a copy of t h e  elements  v i s i b l e  through the  

window i s  provided. When the  window is moved aga in ,  t h e  va lues  of t h e  

elements are wr i t t en  back on the  a r r ay  be fo re  the  move is executed. Thus each 

process  works on a p r i v a t e  copy of t he  elements v i s i b l e  through the  window, 

and the  a c t u a l  a r r a y  is o r d i n a r i l y  updated only  when the  window is moved 

away. Procedures READ and WRITE are a v a i l a b l e  to update  the  window o r  the  as- 

s o c i a t e d  l a rge  array r e spec t ive ly  without a c t u a l l y  moving the  window. 

Depending upon t h e  s i z e  of the  window and t h e  p o s i t i o n  of t he  window 

w i t h i n  the  la rge  a r r ay ,  t he  window may p a r t i a l l y  o r  f u l l y  cover one or more 

blocks of t h e  a r ray ,  as shown i n  Pig. 1. I n t e r n a l l y  f o r  each window a list of 

blocks covered by t h e  window is maintained. The procedure READ s e q u e n t i a l l y  

makes an en t ry  c a l l  t o  each of the  BLOCK-CONTROLLW tasks as soc ia t ed  with t h e  

blocks i n  t h i s  l ist i n  o rde r  t o  update t h e  a p p r o p r i a t e  po r t ion  of t h e  

window. S imi la r ly ,  WRITE makes an e n t r y  c a l l  t o  t h e  t a s k s  f o r  updating t h e  

appropr i a t e  port ion of t he  blocks.  
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When a window i s  t o  be moved to a new p o s i t i o n  s e v e r a l  s t e p s  need t o  be 

performed. F i r s t  t he  elements a t  the p re sen t  p o s i t i o n  are updated ( f o r  w r i t e -  

only and read-write windows) with c a l l s  t o  the  t a s k s  c o n t r o l l i n g  the  blocks 

covered by the  window. Then en t ry  c a l l s  are made t o  t h e s e  t a s k s  t o  detach t h e  

window from the  blocks.  

Next the  blocks t h a t  would be covered by t h e  window i n  the  new p o s i t i o n  

are determined. Entry c a l l s  are made t o  the  t a s k s  c o n t r o l l i n g  these  b locks  t o  

a t t a c h  t h e  window t o  the  blocks.  Each t a s k  determines i f  t h e  window can over- 

l a y  i t s  block without  causing an incompatible over lap  wi th  a window a l r eady  

s t a t i o n e d  on t h e  b lock  ( s ince  write-only and read-write windows cannot 

over lap) .  I f  such a overlap would occur ,  t h e  window t o  be moved is delayed 

u n t i l  t h e  o the r  window has moved off t h e  pos i t i on .  Otherwise t h e  

BLOCK-CONTROLLER t a s k  a t t a c h e s  the  window t o  t h e  block. Once a t t a c h  e n t r y  

ca l l s  f o r  a l l  t h e  blocks covered by the  window have been s u c c e s s f u l l y  

completed, t h e  elements a t  the  new p o s i t i o n  are read i n t o  t h e  window ( l o c a l  

a r r a y ) ,  thus  completing the  operat ion of moving a window. 

Block c o n t r o l l e r  t a s k s  

Each of t h e  BLOCK - CONTROLLER t asks  c o n t r o l l i n g  a b lock  of t h e  a r r a y  main- 

t a i n s  a l ist  of t h e  windows a t tached  t o  t h e  block. Since a window may be only 

cover ing  a p a r t  of t he  block, information about t h e  p o r t i o n  of t he  block 

covered by t h e  window and about the corresponding p a r t  of t h e  window which 

over lays  the  block,  is a l s o  maintained by the  t a s k  f o r  each of the  windows at- 

tached t o  i t .  Thus when a t a sk  accepts a READ o r  WRITE ca l l  f o r  a p a r t f c u l a r  

window, i t  can determine the appropriate  po r t ions  of t he  window and the  block 

t h a t  are t o  be used f o r  t h e  purpose of reading o r  wr i t i ng .  
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A t a sk  con t ro l l i ng  a block of the  l a r g e  a r r a y  has  four  en t ry  p o i n t s  (a) 

a t t a c h  a window, (b) detach a window, (c) read and (d)  w r i t e .  For an a t t a c h  

e n t r y  c a l l ,  t h e  task  checks f o r  incompatible  over lap  with windows a l r eady  on 

i ts  window l i s t .  I f  no overlap can occur o r  i f  one of t h e  overlapping windows 

is a read-only window then the  window is a t t ached  t o  the  window-list a long 

with t h e  re levant  da t a  regarding t h e  po r t ion  of t h e  block being overlayed by 

t h e  window and the  p a r t  of the  window covering the  block. Whenever a window 

is a t t ached  t o  an empty window-list, t he  t a s k  c o n t r o l l i n g  t h e  block reads  t h e  

b lock  i n  from secondary s to rage .  Thus t h e  block is r e s i d e n t  i n  memory only 

while  a window is covering i t .  

For a detach e n t r y  c a l l ,  t h e  p a r t i c u l a r  window is detached from the  win- 

dow-list. I f  t h i s  causes  t h e  window-list t o  become empty t h e  block is w r i t t e n  

back onto secondary s torage .  The t r a n s f e r  t o  secondary s t o r a g e  is performed 

only i f  t h e  block has  been modified whi le  i t  w a s  r e s i d e n t  i n  memory. I n  

e i t h e r  case ,  the memory requi red  f o r  the b lock  is then re leased .  

For a read en t ry  c a l l ,  t h e  appropr i a t e  po r t ion  of t h e  block is copied 

i n t o  the  window. S imi l a r ly  f o r  a write e n t r y  cal l ,  t h e  copying is done from 

the  window i n t o  t h e  block. 

Mutual exclusion and deadlock 

The use of an independent t a sk  c o n t r o l l i n g  access t o  each block of a 

l a r g e  a r r a y  in  t h e  ADA fmplementation provides  mutual exc lus ion  of e x t e r n a l  

t a s k s  wishing to access  t h e  block in order  t o  move t h e i r  windows. Once a copy 

of t h e  re levant  po r t ion  of t h e  block has  been made i n t o  a window, independent 

e x t e r n a l  tasks  can process t h e i r  windows concurren t ly .  The use of t a s k s  f o r  

c o n t r o l l i n g  the blocks thus provides  a moni tor - l ike  mutual exc lus ion ,  bu t  i t  

does not  sharply l i m i t  the  poss ib l e  concurrency a v a i l a b l e  f o r  processing of 
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t h e  a r r ays .  Note t h a t  d i r e c t  access t o  BLOCK CONTROLLER t a s k s  is  not  ava i l -  

a b l e  t o  t h e  use r  because these  tasks are hidden wi th in  the  LARGE-4RRAY pack- 

age. 

- 

Deadlock when s e v e r a l  windows are  moving asynchronously on the same a r r a y  

is  avoided by a simple resource order ing s t r a t e g y .  Blocks are numbered se- 

q u e n t i a l l y  and become the  "resources" t h a t  must be requested i n  a f ixed  

sequence. A MOVE o r  SET opera t ion  must proceed by f i r s t  detaching the  window 

from each block i t  covers  and then a t t a c h i n g  the  window t o  the blocks i n  i ts  

new p o s i t i o n  i n  t h e  o rde r  of the  block numbers. No reading o r  wr i t i ng  of por- 

t i o n s  of a window may occur u n t i l  t he  window has  been success fu l ly  a t t ached  t o  

a l l  t h e  blocks i t  covers.  

Subwindows 

Subwindows can be  s t a t i c a l l y  overlayed on a window v i a  the procedure 

CREATE provided f o r  t h i s  purpose. The window with which the  subwindow is t o  

be a s soc ia t ed ,  i t s  p o s i t i o n  wi th in  the window and i ts  p r i v i l e g e s  are passed as 

parameters.  The p r i v i l e g e s  of a subwindow have t o  be  compatible with those  of 

t h e  a s s o c i a t e d  window (e.g., a write-only window cannot have a read-only 

subwindow). Also t he  subwindow conf igura t ion  over lay ing  a window should not  

cause an incompatible  overlap between subwindows wi th  d i f f e r e n t  p r i v i l e g e s .  

Procedure ASSIGN is used t o  ass ign  a va lue  t o  a p a r t i c u l a r  element of a 

subwindow. Function GET r e t u r n s  the va lue  of a s p e c i f i e d  element. These two 

subprograms work d i r e c t l y  on the  window t o  which the  subwindow is a t t ached  

( r a t h e r  than on a copy). Note that  t h e r e  are no procedures f o r  moving sub- 

windows; on ly  t h e  window on which the subwindow is overlayed can be  moved. A 

move au tomat i ca l ly  updates the  elements i n  the  subwindow. 

-13- 



A funct ion EOS has  been provided f o r  both a window and a subwindow t o  de- 

termine i f  the window o r  subwindow is s t r a d d l i n g  t h e  edge of t h e  l a r g e  a r r a y  

s t r u c t u r e .  This func t ion  r e t u r n s  an i n t e g e r  s i g n i f y i n g  the  p a r t i c u l a r  edge o r  

corner  t h a t  has been reached, o r  zero if the  window o r  subwindow is e n t i r e l y  

wi th in  the  boundaries of the  a r r ay .  Various o t h e r  func t ions  are provided t o  

determine the  p r o p e r t i e s  of l a r g e  a r r a y s ,  windows, and subwindows. 

The semantics of t h e  l a r g e  a r r a y  model has  been descr ibed  above i n  terms 

of t h e  LARGE-IRRAY package. A more complete d e s c r i p t i o n  may be found i n  

181. The package has been implemented on the  VAX 11/780 a t  the  Univers i ty  of 

V i rg in i a  using the  UNIX implementation of t he  NW ADA/ED t r a n s l a t o r  and i n t e r -  

p r e t e r .  

5 .  Implementation on the  F i n i t e  Element Machine 

Implementation s t r a t e g i e s  f o r  l a r g e  a r r a y  process ing  are another  aspect 

of t h i s  p ro jec t .  Rather than f i x  e n t i r e l y  the  semantic d e t a i l s  of t he  gene ra l  

l a r g e  a r r a y  model and then search  f o r  an e f f e c t i v e  implementation s t r a t e g y  on 

d i f f e r e n t  d i s t r i b u t e d  a r c h i t e c t u r e s ,  we have chosen in s t ead  t o  explore  d i f f e r -  

e n t  t a i l o r i n g s  of the  genera l  semantic model t o  f i t  p a r t i c u l a r  a r c h i t e c t u r e s .  

The d i s t r i b u t e d  system t o  which we have immediate access  is the  NASA 

F i n i t e  Element Machine (FEM), c u r r e n t l y  running i n  a four  processor  ve r s ion  a t  

the  NASA Langley Research Center,  with a i6 processor  ve r s ion  expected t o  be  

complete by the end of 1982 and a 36 processor  ve r s ion  a v a i l a b l e  sometime i n  

1983. The PEM is an MIMD a r c h i t e c t u r e  o r i g i n a l l y  designed f o r  f i n i t e  element 

c a l c u l a t i o n s  in  s t r u c t u r a l  engineer ing-  However the  a r c h i t e c t u r e  is gene ra l  

purpose except f o r  minor d e t a i l s .  A T I  990 minicomputer s e rves  as a cont ro l -  

ler  and i n t e r f a c e  with secondary s t o r a g e  and the  e x t e r n a l  environment. Each 
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of t h e  36 FEM processors  is a standard T I  9900 microcomputer with s e p a r a t e  

l o c a l  memory. There is  no shared memory. The processors  are arranged i n  t h e  

form of a square a r r a y ,  and each can communicate d i r e c t l y  with i ts  e i g h t  near- 

est neighbors o r  over a g loba l  bus  t o  any o t h e r  processor  o r  t h e  c o n t r o l l e r .  

The l o c a l  communication l i n e s  f o r  the processors  on the  " l o g i c a l  edge" of t h e  

a r r a y  wrap around. A separate network composed of a set of boolean " s i g n a l  

f l ags"  is provided f o r  synchronizat ion of t he  processors .  

Curren t ly  f o r  t h e  programmer on t h e  FEM (us ing  Pasca l ) ,  i f  a l a r g e  a r r a y  

i s  t o  be processed, t he  programmer must p a r t i t i o n  the  a r r a y ,  s t o r e  i t  on se- 

condary s to rage  i n  b locks ,  and e x p l i c i t l y  code t h e  t r a n s f e r s  of t h e  b locks  

through the  c o n t r o l l e r  t o  the  ind iv idua l  processors  as needed. Adams and 

Ortega [l] desc r ibe  a t y p i c a l  f i n i t e  element c a l c u l a t i o n  of t h i s  s o r t .  

The implementation design f o r  the  l a r g e  a r r a y  model on the  FEM is orga- 

nized as follows. A l a r g e  a r r a y  is s t o r e d  on a secondary s to rage  device  i n  

b locks  or pages. The c o n t r o l l e r  memory is used as a "staging buf fer"  (some- 

what l i k e  a b u f f e r  i n  ord inary  f i l e  1/01. The c o n t r o l l e r  handles  a l l  r e q u e s t s  

f o r  movement of windows. Thus a l l  t he  d a t a  s t r u c t u r e s  needed t o  implement 

windows and subwindows are maintained by the  c o n t r o l l e r  i t s e l f .  

The c o n t r o l l e r  receives requests  for c r e a t i n g  and opening l a r g e  a r r a y s  

and a s s o c i a t e s  l a r g e  a r r a y s  with ex te rna l  f i l e s .  The c r e a t i o n  of window8 and 

subwindows is a l s o  performed by t h e  c o n t r o l l e r .  Each t i m e  a t a sk  executes  t h e  

procedure CREATE for d e f i n i n g  a window or a subwindow, the c o n t r o l l e r  is 

s igna led  and t h e  r e l evan t  da t a  is sent  t o  it. Along with  the  da t a  p e r t a i n i n g  

t o  t h e  size, p o s i t i o n ,  etc., of t h e  windows and subwindows, t h e  c o n t r o l l e r  al- 

so s t o r e s  information about t he  task o r  subtask  (and the  processor )  wi th  which 

each is assoc ia ted .  
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When a task r eques t s  t h a t  a window be pos i t i oned  a t  a p a r t i c u l a r  p l ace  on 

t h e  l a r g e  a r ray  using t h e  SET procedure,  t h e  r eques t  i s  s e n t  t o  t h e  

c o n t r o l l e r ,  which b r ings  the  r e l evan t  pages from secondary s to rage  i n t o  i t s  

l o c a l  memory, and then t r a n s f e r s  t he  d a t a  t o  t h e  processor  memories. When a 

t a s k  reques ts  t h a t  i ts  window be moved (by a c a l l  t o  the  MOVE procedure) ,  t h e  

reques t  is sent  t o  t h e  c o n t r o l l e r ,  which uploads t h e  r e l e v a n t  blocks from t h e  

FEM processors ,  modif ies  t h e  pages i n  i ts  "s tag ing  buffer" ,  w r i t e s  these  pages 

ou t  t o  secondary s to rage ,  b r ings  i n  t h e  new pages r equ i r ed ,  and re loads  t h e  

processor  memories with the  new da ta .  This  is the  process  t h a t  now must be 

done manually by t h e  programmer. S imi l a r ly  a READ o r  WRITE reques t  f o r  a win- 

dow r e s u l t s  i n  downloading o r  uploading of da t a  t o  the  processor  memories by 

t h e  c o n t r o l l e r .  Note t h a t  i n  the  FEM implementation t h e r e  is no need f o r  t h e  

BLOCK-CONTROLLER t a s k s  used i n  the ADA implementation s i n c e  a l l  reques ts  f o r  

block access a re  handled s e q u e n t i a l l y  by a s i n g l e  t a s k  i n  the  c o n t r o l l e r .  

Each subwindow is  as soc ia t ed  wi th  a sub ta sk  on one of t he  FEM 

processors .  When subwindows are overlayed on a window, s to rage  f o r  each of 

t h e  subwindows of the  window is  a l l o c a t e d  wi th in  each subtask.  When the main 

t a s k  pos i t i ons  t h e  window on t he  l a r g e  a r r a y ,  t h e  d a t a  i s  downloaded on t h e  

g l o b a l  bus to  the  subwindow area wi th in  each subtask .  The subtasks can syn- 

chronize themselves using t h e  hardware supported f l a g  network a f t e r  process ing  

of t he  d a t a  within the  subwindows has  been completed. A t  t h i s  po in t ,  t he  main 

t a s k  can again move the  window (which r e s u l t s  in uploading the  subwindow d a t a  

t o  the  s tag ing  b u f f e r  i n  the  c o n t r o l l e r  and the  downloading of new da ta  t o  the  

subwindow areas  i n  t h e  processors ) .  The sub ta sks  can then  be r e s t a r t e d  t o  

process  the  new subwindow da ta .  

I n  the  general  semantic model f o r  l a r g e  a r r a y s ,  overlapping subwindows 

may be used t o  a l low one subtask  t o  access d a t a  t h a t  is being processed by 
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another subtask. Implementation of this structure without shared memory on 

the FEM is difficult. On the FEM subtasks resident on different processors 

instead may communicate directly using the local and global communication 

links. Overlapping subwindows are then unnecessary and may be prohibited. 

The main task that "owns" a window and controls its movement may be resi- 

dent either on the controller or on one of the processors. It may have a sub- 

window itself where it processes the array, or it may only serve as a 

synchronizer to monitor the activity of the subtasks and move the window when 

each processing step has been completed. 

To match the hardware realities of the FEM, we have made several restric- 

tions on the general large array model: 

a. A window must be either completely partitioned into non-overlapping 

subwindows or it must be entirely without subwindows. 

b. Subwindows are associated with subtasks statically (at the time of 

their creation) rather than being passed as parameters to the subtasks. 

6 .  Example 

The Finite Element Machine has been designed to solve finite element pro- 

blems in structural analysis. One of the major phases in the finite element 

method of analyzing structures is the solution of a system of simultaneous 

equations of the form: 

A x = b  

In this section, an algorithm for solving such a system of equations, 

where the matrix A is an n by n upper triangular matrix, is sketched. The al- 

gorithm essentially uses a direct back solve method for solving the equations 

for a set of right hand side vectors b. The algorithm has been coded in ADA 
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us ing  the  LARGE-ARRAY package ( see  Appendix B) , but  assuming the  r e s t r i c t i o n s  

of t h e  FEM implementation r a t h e r  than t h e  gene ra l  ADA implementation. A 

ske tch  of the a lgor i thm of Appendix B is given he re ;  see [81 f o r  t h i s  and 

o t h e r  complete a lgori thms.  

For t h e  purposes of t h i s  a lgor i thm the  FEM would be configured as a 

l i n e a r  sequence of n processors ,  each communicating only with i ts  l e f t  and 

r i g h t  neighbors. The wrap around f e a t u r e  of t h e  FEM would be used t o  connect 

processors  on t h e  edge. For t h e  purposes of coding the  algori thm, ADA t a s k  

e n t r y  ca l l s  have been used t o  s imula te  the  FEM l o c a l  neighbor connections.  

Each of the  f irst  n-1 processors  would have a subtask  of type BACK-SOLVE 

r e s i d e n t  upon it .  The subtask  MAIN-BACK-SOLVE would be r e s i d e n t  on t he  n t h  

processor  (see App. B). The a lgor i thm is set up s o  t h a t  each of t h e  proces- 

s o r s  views one column of t he  a r r a y  A and performs p a r t i a l  c a l c u l a t i o n s  on t he  

s o l u t i o n  vector X. Thus t h e  subtask  MAIN-BACK-SOLVE "receives"  t h e  r i g h t  hand 

s i d e  vec to r  b and c a l c u l a t e s  t he  n th  element of x, c a l c u l a t e s  t he  con t r ibu t ion  

of t h e  n t h  column of t he  a r r a y  A and passes  on t h e  p a r t i a l l y  ca l cu la t ed  x vec- 

t o r  t o  its l e f t  neighbor.  The k t h  subtask  BACK-SOLVE r ece ives  the  p a r t i a l l y  

c a l c u l a t e d  x vector  from i ts  r i g h t  neighbor,  c a l c u l a t e s  t h e  k t h  element of t h e  

x vec to r ,  and updates t h e  rest of the  x vec to r .  

The procedure MAIN r e s i d e n t  on t h e  c o n t r o l l e r  d e c l a r e s  A, X, and B as 

LARGE-ARRAY'S and OPEN'S A and B, a s s o c i a t i n g  them wi th  a l r eady  e x i s t i n g  ex- 

t e r n a l  f i l e s .  A new f i l e  is c rea t ed  and a s s o c i a t e d  wi th  t h e  l a r g e  a r r ay  X. A 

read-only window, A-window, is a l s o  def ined  by MAIN and a s soc ia t ed  wi th  the  

l a r g e  a r r a y  A. A-window is defined t o  he as l a r g e  as t h e  e n t i r e  a r r a y  A and 

is pos i t ioned  so as t o  cover the  whole a r r ay .  

Each of the BACK-SOLVE subtasks  d e c l a r e s  a subwindow, A-sw, of t he  window 

A - window and pos i t i ons  i t  such t h a t  t he  subwindow f o r  subtask  k is a t  the  k t h  
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column of the  window. Also a one element window is  dec lared  by each subtask  

on t h e  l a r g e  a r r a y  X and is i n i t i a l l y  pos i t i oned  on t h e  f i r s t  column of t h e  

k t h  row of X. 

The subtask  MAIN-BACK-SOLVE, in  a d d i t i o n  t o  the  A-sw subwindow and the  X 

window, a l s o  has  a window, B-window, on t h e  l a r g e  a r r a y  B. This window is  

i n i t i a l l y  pos i t i oned  a t  the  f i r s t  column of t h e  a r r a y  B. Afte r  processing 

t h i s  f i r s t  column of t h e  B-window, t h e  subtask  c a l c u l a t e s  t h e  n t h  element of 

t h e  x v e c t o r ,  writes i t  i n  the  X-window, pas ses  i t s  con t r ibu t ion  t o  its l e f t  

neighbor ( subtask  n-1) and then moves t h e  B-window and X-window one p o s i t i o n  

t o  t h e  r i g h t  on the  r e spec t ive  a r rays  so as t o  process  the  next  b vec tor .  

Process ing  and movement a l t e r n a t e  u n t i l  t h e  end of t h e  l a r g e  a r r a y  B is 

reached (EOS(B_window) is negat ive) ,  i n d i c a t i n g  t h a t  s o l u t i o n  f o r  a l l  t h e  

given r i g h t  s i d e s  ( i n  B) is complete. 

The k t h  subtask  BACK-SOLVE rece ives  k elements of t he  p a r t i a l l y  ca lcu la-  

ted  x va lues  from i ts  r i g h t  neighbor. It gene ra t e s  t h e  k t h  element of t h e  x 

vec to r  i n  X-window, communicates k-1 p a r t i a l l y  c a l c u l a t e d  x va lues  t o  i t s  l e f t  

neighbor,  and then moves its X-window. This  is  repea ted  u n t i l  a l l  r i g h t  hand 

s i d e s  have been processed and all subtasks are a t  t h e i r  TERMINATE SELECT al- 

t e r n a t i v e ,  a t  which t i m e  they a l l  terminate  a t  once. 

7. Conclusions 

The l a r g e  a r r a y  model is  intended t o  provide  a conceptual  u n i t y  a t  a 

high-level  t o  an area of d i s t r i b u t e d  process ing  t h a t  is now t r e a t e d  only wi th  

r e l a t i v e l y  low level pr imi t ives .  The c e n t r a l  concepts  of window and subwindow 

al low bo th  t h e  d i s t r i b u t e d  s to rage  and t h e  d i s t r i b u t e d  processing of a l a r g e  

a r r a y  t o  b e  represented  i n  an app l i ca t ions  program i n  a way t h a t  is  n a t u r a l  
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for array processing but which at the same time reflects the performance real- 

ities involved. 

Implementation of the large array package on different distributed sys- 

tems would take on a different form in each case. We have chosen to first de- 

fine a general semantic model and then to study the tailoring of the model 

that is appropriate for different distributed architectures. 

There is still a great deal to be learned about the representation and 

implementation of large data structures and data structure processing on dis- 

tributed systems. Within the confines of this particular model, several areas 

of importance are: 

a. Dynamic extension of arrays. It is natural to consider tasks as ex- 

tending arrays in various ways during processing (continuing the analogy with 

file processing in traditional languages) . Although we have touched on these 
issues here to a limited extent, a more complete semantics and implementation 

model for such dynamic extension is needed. 

b. Dynamic windows. The windows discussed in this model are conceptually 

static as far as their size and other parameters such as move increments are 

concerned. The semantics and implementation for more dynamic windows need to 

be explored. 

C. Special types of arrays. The package supports only matrices in the 

form given here. The extension to higher dimension arrays appears straight- 

forward but needs to be explored, a8 w e l l  as special types of arrays such as 

symmetric, sparse, and banded matrices. 
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Appendix A. ADA Generic Package for Larne Arrays (specification part only). 

generic 

package LARGE-4RRAY'pKGE is 
type ELEMENT is private; 

type LARGEJRRAY is private; 
type HATRIX is array(1NTEGER range <>, INTEGER range <>) of ELEMENT; 
type WINDOW-INH) is private; 
type WINDOW-DESC(row-size, col-size: NATURAL) is 

record 
win: MATRIX(l..rw_size, l..col-size); 
inf 0: WINDOW-INFO; 

end record; 
type WINDOW is access WINDOW-DESC; 
type SUBWINDOW is private; 
type PRIVILEGES is (R,W,RW); 

-- Procedures to create or open large arrays (attach internal names to external large arrays). 
procedure CREATE( ar: in out LARGE-UY; 

row-low-bd, row-high-bd, col-low-bd, col-high-bd: INTEGER; 
name: in STRING); 

row-low-bd, row-high-bd, col-low-bd, col-high-bd: INTEGER; 
name: in STRING); 

procedure OPEN( ar: in out LARGE-ARRAY; 

- Procedures to delete or close large arrays. 
procedure DELETE( ar: in out LARGE-ARRAY); 
procedure CLOSE( ar: in out LARGE-ARRAY); 

-- Procedures for creating windows and subwindows. 
procedure CREATE( wind: in out WINDOW; 

row-size, col-size: NATURAL; 
inmode: PRIVILEGES; 
row-inc, col-inc: INTEGER; 
ar: LARGE-ARRAY; 
edge: BOOLEAN; 
edge-element: ELEMENT); 

row-size, col-size, rowqos, colgos: NATURAL 
inmode: PRIVILEGES; 
wind: WINDOW) ; 

procedure CREATE( subwin: in out SUBWINDOW; 

- Procedures to move windows. - window is not read-only) and a read of the next position (if the window is not write-only). Note that a move implies a write of t le last window position (if the 

procedure SET( wind: in out WINDOW; - absolute movement 
procedure MOVE( wind: in out WINDOW); - relative movement new-row, new-col: INTEGER); 

- Procedures to read and write windows without movement of the window. 
procedure READ( wind: in out W I N D O W ) ;  
procedure WRITE( wind: in WINDOW) ; 

-- Procedures to assign and get values of single elements of subwindows. 
procedure ASSIGN( aubwin: in out SUBWINDOW; 

row, col: NATURAL; 
value: ELEMENT) ; 

function GET( subwin: SUBWINDOW; 
row, col: NATURAL) return ELEMENT; 

- Functions to determine the end of structure. 
function EOS( wind: in WINDOW) return INTEGER; 
function EOS( aubwin: in SUBWINDOW) return INTEGER; 

-- Various other functions are included in the package but not listed here that - return the various properties of large arrays, windows, and subwindows. 
end LARGE-RRAY-PKGE; 
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Appendix B. ADA Program for Parallel Solution of a Set of Simultaneous Eauations. 

with LARGE-ARRAY-PKGE; 
procedure MAIN le 

package FLOAT-4RRAY is new LARGE-ARRAY-PKGE(float); 
use FLOAT-ARRAY; 

n: constant NATURAL; - size of the A matrix 
m: constant NATURAL; - number of right hand sides to be solved 
task type BACK-SOLVE is 

entry WHO-4M-I(self-id: NATURAL); 
entry MORE; 
entry NEXT(x: float); 

end BACK-SOLVE; 
task body BACK-SOLVE is separate; 

task MAIN-BACK-SOLVE is 
end MAIN-BACK-SOLVE; 
task body MAIN-BACK-SOLVE is separate; 

SOLVE: array (l..n-l) of BACK-SOLVE; 
A,X,B: LARGE-4RRAY; 
A-window: WINDOW; 

begin 
OPEN(A,l,n,l,n,"A-file"); 
OPEN(B, 1 ,n, 1 ,m, "B-f ile") ; 
OPEN(X, 1 ,n, 1 ,m,"X-f ile") ; 
CREATE(A-windov,n,n,R,O,O,A,FALSE); 

SET(A-window,l,l); 
for i in l..n-1 loop 

end loop; 

-- Large array A is n x n; its external file name is A-file. - Large array B is n x m; its external file name is B-file. - Large array X is n x s; its external file name is X-file. - Create A-window as an n x n window on A; - A-window never moves, so its move increments are 0. - Position A-window to cover all of A. 

SOLVE(1) .WO_An_I(NATURAL(i)); - Inform each of the SOLVE tasks of its id number. 
end MAIN; 

separate (MAIN) 
task body MAIN-BACK-SOLVE is 

B-window, X-window: WINDOW; 
A-sw: SUBWINDOW; 

begin 
CREATE(A-sw,n,l,l,n,R,A-window); 

CREATE(X-window,l,l,W,O,l,X,FALSE); 

- Create A-sw as an n x 1 read-only subwindow on the - nth column of A-window. - Create X-window as a 1 x 1 write-only window on X; - set the move increments to (O,l), i.e., move along - a row, one column at a time. - Position X-window at row n, column 1 on X. - Create B-window as an n x 1 read-only window on B; - set the move increments to (O,l), as noted above. - Position B-window at raw 1, column 1 of B. 

SET(X-window,n,l); 
CREATE(B-window,n,l,R,O,l,B,FALSE); 

SET (B-window, 1,l) ; 
solve-cycle: 

loop 
X-window(l.1) := B-window(n,l) / A-sw(n,l); - Calculate the nth element of the x vector 
SOLVE(n-1) .MORE; - Signal the left neighbor, subtask n-1, 
for i in l..n-1 loop 

end loop; 
MOVE (B-window) ; 
MOVE (X-window) ; 
if EOS(B-window) /= 0 then 

end if; 

- and write it in the X-window. 
- that more is to be done. - Pass the partially calculated x values on to the left neighbor. 

SOLVE(n-l).NEXT(B_window(i,l) - A-sw(i.1) * X-window(1,l)); 
- Move the B-window one column to the right. - Move the X-window one column to the right. 

exit solve-cycle -- Exit if processing of right sides is complete, i.e., - if B-window is outside of the B array. 
end loop solve-cycle; 

end MAIN-BACK-SOLVE; 

. 
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separate (MIAIM) 
task body BACK-SOLVE is 

X-window: WINDOW; 
A-sw: SUBWZHMIW; 
id: NATURAL; 
partial-x: array(l..n) of float; 

. 
begin 

accept WRO_AM_I(self-id: NATURAL) do 

end WHO-4M-I; 
CREATE (A-sw,n, 1,1, id ,R,A-window) ; 

CREATE(X-window,l,l,W,O,l,X,FALSE); 

- Find out your cnin id. 
id :- self-id; 

-- Create A-sw as an n x 1 read-only subwindow - on the id'th column of A-window. - Create X-window as a 1 x 1 write-only window on X; - set the move increments to (O,l), i.e., move along 

-- Position X-window at the id'th row, 1st column of X. 
a row, one column at a time. 

SET(X-window,id,l); 
loop 

select 
accept M R E  do end MORE; - Wait for more processing signal. 

for i in l..id loop - Accept id partial x vector values from right neighbor. 
accept NEXT(x: float) do 

end NEXT; 
partial-x(i) :- x; 

end loop; 
X-window(l,l) := partial-x(id) / A-sw(id.1); - Calculate the id'th element of the - x vector and write it in X-window. 
SOLvE(id-1) .MORE; 
for i in l..id-1 loop -- Pass partial x vector values to left neighbor. 
end loop; 
MOVE (Xrindow) ; 

- Signal left neighbor subtask that more work is ready. 
SOL~(id-l).NEXT(partial_x(i) - A-sw(i,l) * X-window(1,l)); 

- Move X-window one column to the right. 

- Terminate when all subtasks are waiting for more work. Or 
terminate; 

end select; 
end loop; 

end BACK-SOLVE; 
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